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Thanks to… 

• Marc Kéry, who let us use his workshop materials… 



Overview 

• Bayesian analysis by MCMC (Refresher) 

• What is BUGS? 
 

• Using WinBUGS as a stand-alone application (Demo) 
 

• Using BUGS through R (Demo) 
WinBUGS  R2WinBUGS | JAGS  rjags or R2JAGS 

 

• Using BUGS through R (Exercises) 
oPoisson & Binomial regression 

 

• Random effects model in BUGS (Exercises) 
oBinomial regression with random effects 
oOccupancy model for estimating number of occupied patches 

 



Bayesian Inference and  
Markov chain Monte Carlo (MCMC) Sampling 

A [very!] quick refresher 

𝜃 𝑦 =
𝑦 𝜃 [𝜃]

[𝑦]
 



The Bayesian paradigm 

• Data 

 observed realization of a random process 

 𝑦 

 

• Parameters 

 fixed & unknown data generating value, realization of a random process 

 𝜃 

 

• Uncertainty about parameters 

 Based on variation in data and evaluated using posterior distribution 

 



Bayes‘ Rule  

[𝜃 |𝑦]  Posterior distribution of 𝜃 given the data 𝑦 

[𝑦|𝜃] Likelihood of the data 𝑦 given the model [parameters 𝜃] 

[𝜃] Prior probability distribution of parameters 𝜃  

[𝑦]  Marginal distribution of data 𝑦 

 

𝜃 𝑦 =
𝑦 𝜃 [𝜃]

[𝑦]
 



Bayes‘ Rule  

[𝜃 |𝑦]  Posterior distribution of 𝜃 given the data 𝑦 

[𝑦|𝜃] Likelihood of the data 𝑦 given the model [parameters 𝜃] 

[𝜃] Prior probability distribution of parameters 𝜃  

[𝑦]  Marginal distribution of data 𝑦 

 

[𝑦]: In practice, hard, even impossible, to compute 

 Recent method developments that do not require mathematical understanding 

 

𝜃 𝑦 =
𝑦 𝜃 [𝜃]

[𝑦]
 

𝜃 𝑦 ∝ 𝑦 𝜃 [𝜃] 



Bayes‘ Rule  

[𝜃 |𝑦]  Posterior distribution of 𝜃 given the data 𝑦 

[𝑦|𝜃] Likelihood of the data 𝑦 given the model [parameters 𝜃] 

[𝜃] Prior probability distribution of parameters 𝜃  

𝜃 𝑦 ∝ 𝑦 𝜃 [𝜃] 



Prior probability distribution [𝜃] 

• The probability distribution reflecting our prior knowledge about an 
unknown parameter/quantity before any evidence is taken into account, i.e. 
prior 

 



Prior probability distribution [𝜃] 

• The probability distribution reflecting our prior knowledge about an 
unknown parameter/quantity before any evidence is taken into account, i.e. 
prior 

 

Informative priors  
  
• Way of incorporating prior knowledge about 

parameters into the analysis 
 
• Will influence parameter estimate, the magnitude 

of the influence depends on relative ‘strength’ of 
[𝑦|𝜃] vs. [𝜃] 



Prior probability distribution [𝜃] 

• The probability distribution reflecting our prior knowledge about an 
unknown parameter/quantity before any evidence is taken into account, i.e. 
prior 

 

Uninformative/vague priors 
  
• Express lack of prior knowledge about parameters 

 
• Generally preferred for an objective analysis 

 
• Most widely applied  



Uninformative/flat prior 
Beta(1,1) 

Informative prior 
Beta(5,10) 

Prior probability distribution – detection probability [𝑝] 



Likelihood of the data [ݕ|𝜃] 

Say we go out and survey 𝑁 =  30 ponds and find frogs present in 𝑦 = 12 ponds  (and 
we assume 𝑦 is observed perfectly!!). Then the binomial model and likelihood is: 

 
𝑦 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝜃) 

 
𝑦 𝜃 = 𝜃𝑦 1 − 𝜃 𝑛−𝑦 

 
12 𝜃 = 𝜃12 1 − 𝜃 18 

 

So, we can plug in different values of 𝜃 and calculate the probability of checking 30 
ponds and finding 12 with frogs. 



• Inference does not focus on estimating a single point value but on characterizing an 
entire distribution [𝜃|𝑦] 

 

• Posterior can be characterized by Markov chain Monte Carlo (MCMC) simluation 

Posterior inference [𝜃|𝑦] 



Markov chain Monte Carlo - MCMC 

• Simulation-based evaluation of posterior distribution 

• Generates random samples from the posterior 

• Markov property: the value of each iteration idepends on the preceding value 

• MCMC algorithms are constructed so that the Markov chain converges to the 
posterior distribution 

 



MCMC – terminology 

“Burn-in” 

• Chains are started at “initial values” 

• First set of iterations are influenced by initial values 

• Transition phase from initial values to stationary distribution = burn-in 

• Needs to be discarded!!  

 



“Convergence” 

• Has the chain reached its “stationary distribution” (i.e. the posterior)? 

• We can assess convergence using: 

 Trace plots – we want to see “grassy” chains! 

MCMC – terminology 



“Convergence” 

• Has the chain reached its “stationary distribution” (i.e. the posterior)? 

• We can assess convergence using: 

 Gelman-Rubin-statistic (𝑅 ); compares within- and between-chain variation (<1.1) 

MCMC – terminology 



“Posterior sample size”; “Monte Carlo error” 

• MCMC samples are not independent because of the Markov property 

• Effective sample size is the number of samples after accounting for autocorrelation 

• Determines the MC error – “noise“ introduced into the sample by the stochastic 

MCMC process 

• You can reduce the MC error by running longer chains 

• Rule of thumb is that MC error should be <5% (1%) 

MCMC – terminology 
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Questions? 
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What is BUGS? 

• Simple & flexible language to build (write down) sometimes very complex 
hierarchical models and analyze them in a Bayesian framework 

• Implemented in a number of software packages 

o WinBUGS (Gilks et al. 1994)  

o OpenBUGS (Lunn et al. 2009) 

o JAGS (Plummer 2003) 

• WinBUGS and OpenBUGS are standalone software 

• JAGS has command line interface 

• All three usually best run from R using interface packages 



What is BUGS? 

All three applications: 

• Let you describe a statistical model using the BUGS language 

• Translates this description into an MCMC algorithm 

• Run the algorithm according to your specifications to produce samples from the 
joint posterior distribution of all unknown quantities in the model 

• Provide functionalities for processing of results, convergence monitoring and so 
forth 

• If you are still not convinced how useful these applications are: Write your own 
MCMC algorithm!! 

 



What is BUGS? 

BUGS 

Bayesian inference Using Gibbs Sampling 

WinBUGS 

Bayesian inference Using Gibbs Sampling – Windows based  
[no longer being developed, not open source] 

OpenBUGS 

Bayesian inference Using Gibbs Sampling – Open source 
[currently active branch of the original BUGS project]  

JAGS 

Just Another Gibbs Sampler 
[separate project but uses essentially the same language] 



What is BUGS? 

The term ‘BUGS’ will be used interchangeably 

• The software WinBUGS/OpenBUGS  

• The language used by WinBUGS/OpenBUGS/JAGS 
 

“For most ecologists, WinBUGS is simply an ingenious MCMC blackbox. The analyst communicates 

with the MCMC engine by providing a data set and describing a statistical model for it using a simple 

and effective model definition language, the BUGS language (Gilks et al., 1994).” 

From Kèry & Schaub book (2012): 



Key components of BUGS language 

• Nodes are the building blocks of BUGS 

• Deterministic nodes: 
o Assigned with <-  

o Deterministic functions of other (parent) nodes 

o e.g. x <- a + b 

• Stochastic nodes: 
o Assigned with ~ 

o Random variables, coming from a distribution 

o e.g. x ~ dpois(lambda) 

• Data  
o Generally stochastic nodes  

o Can also be fixed (parent) nodes, appearing only on the right side of equations  

o e.g. a and b (above) could be data 

 



Key components of BUGS language 

• Nodes cannot be assigned in the form of vectors, matrices, arrays 

• Almost all assignments have to happen element-wise in the form of for-loops 

     for (i in 1:M){ 

   mu[i]<-alpha + beta * VAR[i] 

 } 

• Whereas in R we could simply write 

 mu<-alpha + beta * VAR   

• An exception is the Multivariate distribution: 

     X[]~dmultinom(n, p[]) 

• BUGS is a declarative language, i.e. order of statements does (mostly) not matter 

• Math functions and statistical distributions are listed in manuals 

 



BUGS vs. glmr 

• R functions lmer()/glmer() in package lme4 most widely used to fit mixed 
models in ecology 

• Mixed models = hierarchical models 

• BUGS is much more flexible than glmer 

• BUGS language a natural treatment of hierarchical models  

• Bayesian implementation in BUGS allows focus on realizations of latent variables 



Questions? 



WinBUGS as a stand-alone application 
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BUGS and R 

• We will almost exclusively be using the R packages to call WinBUGS/JAGS from 
within R   

• Important to get familiar with the workings of WinBUGS directly (if anything, just 
to see how much more practical it is to use R) 

  

 (1) Ingredients of a typical BUGS analysis 

 (2) Demo - Fit a simple model (linear regression) 

  



Ingredients of a BUGS analysis 

• Write the model 

• Compile the data 

• Provide (or generate) initial values 

• Define parameters to be monitored 

 

• Run model 

 

• Look at output 

 



Ingredients of a BUGS analysis 

Write the model 

e.g. consider a simple linear regression where observations, y, are a function of 
some covariate, cov 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  



Ingredients of a BUGS analysis 

Write the model 

e.g. consider a simple linear regression where observations, y, are a function of 
some covariate, cov 

In R we would simply write  

 lm(y ~ cov) 

where 𝛼 (intercept), 𝛽 (slope) and 𝜎2 are parameters to be estimated but R takes 
care of that ‘under the hood’. 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  



Ingredients of a BUGS analysis 

Write the model 

e.g. consider a simple linear regression where observations, y, are a function of 
some covariate, cov 

In BUGS we have to be more algebraically explicit  

             # Likelihood 
     for(j in 1:J){           

       y[j] ~ dnorm(mu[j],tau)          

       mu[j] <- alpha + beta * cov[j] 

     } 

where 𝛼 (intercept), 𝛽 (slope) and 𝜎2 are parameters to be estimated but R takes 
care of that ‘under the hood’. 

J = number of observations (sites, individuals etc…) 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  



Ingredients of a BUGS analysis 

Write the model 

In the BUGS we also have to specify prior distributions for our parameters  

 

# Priors 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 

 

BUGS uses precision (inverse of the variance)  

e.g. normal with mean 0 and 𝜎2= 1/0.001 = 1000 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

density.default(x = rnorm(5e+05, 0, 1000))

-4000 -2000 0 2000 4000

density.default(x = rnorm(50000, 0, 1000))

-10 -5 0 5 10



Ingredients of a BUGS analysis 

Write the model 

In the BUGS we also have to specify prior distributions for our parameters  

 

# Priors 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 

 

BUGS uses precision (inverse of the variance)  

e.g. normal with mean 0 and 𝜎2= 1/0.001 = 1000 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

density.default(x = rnorm(5e+05, 0, 1000))

-4000 -2000 0 2000 4000

density.default(x = rnorm(50000, 0, 1000))

-10 -5 0 5 10



Ingredients of a BUGS analysis 

Write the model 

model{ 

# Priors 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 
# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta * cov[j] 

  } #end j 

} #end model  

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  



Ingredients of a BUGS analysis 

Write the model 

model{ 

# Priors 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 
# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta * cov[j] 

  } #end j 

} #end model  



• Write the model 

• Compile the data 

o Load the data into WinBUGS 

Ingredients of a BUGS analysis 



Ingredients of a BUGS analysis 

• Write the model 

• Compile the data 

o Load the data into WinBUGS 



Ingredients of a BUGS analysis 

• Write the model 

• Compile the data 

o Load the data into WinBUGS 

o Select the number of parallel chains 



Ingredients of a BUGS analysis 

• Write the model 

• Compile the data 

o Load the data into WinBUGS 

o Select the number of parallel chains 



Ingredients of a BUGS analysis 

• Write the model 

• Compile the data 

o Load the data into WinBUGS 

o Select the number of parallel chains 

oCompile the model and data 



• Write the model 

• Compile the data 

• Provide (or generate) initial values 

# initial values ('inits') 

list(alpha = 0, beta = 1, sigma = 1) 

list(alpha = 0, beta = 1, sigma = 10) 

list(alpha = 0, beta = 1, sigma = 100) 

Ingredients of a BUGS analysis 



• Write the model 

• Compile the data 

• Provide (or generate) initial values 

• Determine parameters to be monitored 

 

* Monitors all named nodes 

 

Ingredients of a BUGS analysis 



• Write the model 

• Compile the data 

• Provide (or generate) initial values 

• Determine parameters to be monitored 

 

• Run model 

o Select the number of iterations (updates) 

oHit update 

oViola!!! 

 

Ingredients of a BUGS analysis 



• Write the model 

• Compile the data 

• Provide (or generate) initial values 

• Determine parameters to be monitored 

 

• Run model 

 

• Look at output 

 

Ingredients of a BUGS analysis 



Lets do it! 

Combined: lmWinBUGS.odc 

 

Model:  lmModelWinBUGS.odc 

Data:  lmDataWinBUGS.odc 

Inits:  lmInitsWinBUGS.odc 

 

 

Data simulated using: 𝛼 = 0.5, 𝛽 = −1.5, 𝜎2 = 1 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  



Questions? 
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Accessing BUGS through R 

You can open IntroBUGSscript1.R and follow along if you like!  



Generate data 

###### generate data for a normal regression 

J=100    #number of sampling points 

cov<-rnorm(J, 2,2)  #covariate 

alpha<-0.5   #intercept 

beta<--1.5   #coefficient 

mu<-alpha+beta*cov  #expected value 

sd<-1 

y<-rnorm(J,mu,sd)   #observations 

 

##analyze data using lm() 

rmod<-lm(y~cov) 

 

Model 1:                    𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝐶𝑂𝑉𝑗  



• Write the model 

• Compile the data 

• Write an initial values function 

• Determine parameters to be monitored 

 

• Run model 

• Look at output 

 

The same for all 
packages/programs 

Package/program-specific 

Ingredients of a BUGS analysis 



Write the model 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑉𝐴𝑅𝑗  

sink("binomGLMM.txt") 

cat(" 

model{ 

# Priors 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta * cov[j] 

  } #end j 

} #end model 

",fill = TRUE) 

sink() 

  



Write the model to a text file! 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑉𝐴𝑅𝑗  

sink("binomGLMM.txt") 

cat(" 

model{ 

# Priors 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta * cov[j] 

  } #end j 

} #end model 

",fill = TRUE) 

sink() 



Data, initial values, parameters 

Data 

data<-list(J=J, cov=cov, y=y) 

 

Initial values 

• Supply initial values only for unobserved stochastic nodes 

• Initial values have to fall within the range of support of the prior 

inits<-function(){list(alpha=runif(1),  

                       beta=runif(1), 

                       sigma=runif(1,0,5))} 

Parameters 

params<-c("alpha", "beta", "sigma") 



Run the model 

• WinBUGS with R2WinBUGS 

• OpenBUGS with R2WinBUGS/BRugs 

• JAGS with R2JAGS or rjags 

• Information needed: 

oData, initial values, parameters 

oNumber of parallel chains 

oNumber of iterations 

o Length of adaptive phase/burn-in 

o Thinning interval 

bugs(data, inits, parameters, model.file, n.chains=3,  

     n.iter=5000,n.burn=1000,n.thin=1,debug=T)  



Look at the output 

• Gelman-Rubin (𝑅 ) statistic, effective sample size 

o Included in R2WinBUGS and R2jags output 

oCalled with extra commands for rjags output 

 

• Trace plots – using xyplot()in package coda 

oDo chains look grassy? 

oDo they oscillate around the same mean? 

 

• Posterior density plots – using densityplot() in package coda 

oWere parameters estimable? 

oAre posterior distributions truncated, skewed, multimodal, …? 

 



Lets do it in R! 

Demo 

Data simulated using: 𝛼 = 0.5, 𝛽 = −1.5, 𝜎2 = 1 

Script:    IntroBUGSscript1.R 

 

Exercise 

Script: IntroBUGSscript2.R 

Contains code to simulate data and write model 

Your task: Complete steps to run Poisson regression in JAGS 

(HINT: log() and dpois()) 

 

 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 



Questions? 
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(random effects)  
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GLM (fixed effect) GLMM (mixed effect) 

Stochastic part 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎

2  

Linear predictor 𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 

Hyper parameters ------- 𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼, 𝜎𝛼
2) 

Random effects? 

• Some parameters themselves may be realizations of a random process 

• Lets consider a random intercept model 

• i.e. intercepts come from a common distribution 



GLM (fixed effect) GLMM (mixed effect) 

Stochastic part 𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎

2  

Linear predictor 𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 𝜇𝑗 = 𝛼𝑘 + 𝛽𝑘 ∗ 𝑐𝑜𝑣𝑗 

Hyper parameters ------- 
𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼, 𝜎𝛼

2) 

𝛽𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛽, 𝜎𝛽
2) 

Random effects? 

• Some parameters themselves may be realizations of a random process 

• Lets consider a random intercept model 

• i.e. intercepts come from a common distribution 



Generate some data? 

###### generate data for a normal regression 

J = 100     # number of sampling points 

cov <- rnorm(J, 2,2)   # covariate 

alpha <- 0.5    # intercept 

beta <- -1.5    # coefficient 

mu <- alpha+beta*cov  # expected value 

sd <- 1 

y <- rnorm(J,mu,sd)   # observations 

 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 

GLM 



Generate some data? 

###### generate data for a random intercept normal regression 

J = 200       # observations 

grp = gl(10,20)      # group membership k=10 

cov <- rnorm(J, 2,2)      # covariate 

mu.alpha <- 0.5           # hyper mean for intercept 

sd.alpha <- 1             # hyper sd for intercept 

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas  

beta <- -1.5               # coefficient 

mu <-alpha+beta*cov        #expected value 

sd <-1 

y <- rnorm(J,mu,1)      #observations 

 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 

GLMM 



###### generate data for a random intercept normal regression 

J = 200       # observations 

grp = gl(10,20)      # group membership 

cov <- rnorm(J, 2,2)      # covariate 

mu.alpha <- 0.5           # hyper mean for intercept 

sd.alpha <- 1             # hyper sd for intercept 

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas  

beta <- -1.5               # coefficient 

mu <-alpha+beta*cov        #expected value 

sd <-1 

y <- rnorm(J,mu,1)      #observations 

 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 

GLMM Generate some data? 



###### generate data for a random intercept normal regression 

J = 200       # observations 

grp = gl(10,20)      # group membership 

cov <- rnorm(J, 2,2)      # covariate 

mu.alpha <- 0.5           # hyper mean for intercept 

sd.alpha <- 1             # hyper sd for intercept 

alpha <- rnorm(10,mu.alpha,sd.alpha) # group level (RE) alphas  

beta <- -1.5               # coefficient 

mu <-alpha[grp]+beta*cov   # expected value 

sd <-1 

y <- rnorm(J,mu,1)      # observations 

 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 

GLMM Generate some data? 



𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 

Generate some data? 



Fitting a Normal GLM in the BUGS language 

• Write the model - likelihood 

# Likelihood for the GLM 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta * cov[j] 

  } 

GLM 



Fitting a Normal GLMM in the BUGS language 

# Likelihood for the GLMM 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha[grp[j]] + beta * cov[j] 

  } 

• Write the model - likelihood 

# Likelihood for the GLM 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta * cov[j] 

  } 

GLMM 



Fitting a Normal GLMM in the BUGS language 

• Write the model - priors 

# Priors GLM 

  alpha ~ dnorm(0,0.001) 

  beta ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 

# Priors GLMM 

  for(k in 1:n.gr){ 

    alpha[k] ~ dnorm(mu.alpha,tau.alpha) 

  } 

  mu.alpha ~ dnorm(0,0.001) 

  tau.alpha <- 1/sd.alpha*sd.alpha 

  sd.alpha ~ dunif(0,20) 

   

  beta ~ dnorm(0,0.001) 

  tau <- 1/(sigma*sigma) 

  sigma ~ dunif(0,100) 



Fitting a Normal GLMM in the BUGS language 

• Write the model: model{ 

# Priors GLMM 

  for(k in 1:n.gr){ 

    alpha[k] ~ dnorm(mu.alpha,tau.alpha) 

  } 

  mu.alpha ~ dnorm(0,0.001) 

  tau.alpha <- 1/sd.alpha*sd.alpha 

  sd.alpha ~ dunif(0,20) 

  beta ~ dnorm(0,0.001) 

  tau <- 1/(sigma*sigma) 

  sigma ~ dunif(0,100) 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha[grp[j]] + beta * cov[j] 

  } 

} 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 



• Write the model: model{ 

# Priors GLMM 

  for(k in 1:n.gr){ 

    alpha[k] ~ dnorm(mu.alpha,tau.alpha) 

  } 

  mu.alpha ~ dnorm(0,0.001) 

  tau.alpha <- 1/sd.alpha*sd.alpha 

  sd.alpha ~ dunif(0,20) 

  beta ~ dnorm(0,0.001) 

  #tau <- 1/(sigma*sigma) 

  #sigma ~ dunif(0,100) 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dpois(mu[j])          

   log(mu[j]) <- alpha[grp[j]] + beta * cov[j] 

  } 

} 

𝑦𝑗~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 𝜇𝑗  

𝑙𝑜𝑔 (𝜇𝑗) = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 

Fitting a Normal GLMM in the BUGS language 



• Write the model: model{ 

# Priors GLMM 

  for(k in 1:n.gr){ 

    alpha[k] ~ dnorm(mu.alpha,tau.alpha) 

  } 

  mu.alpha ~ dnorm(0,0.001) 

  tau.alpha <- 1/sd.alpha*sd.alpha 

  sd.alpha ~ dunif(0,20) 

  beta ~ dnorm(0,0.001) 

  #tau <- 1/(sigma*sigma) 

  #sigma ~ dunif(0,100) 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dbern(mu[j])          

   logit(mu[j]) <- alpha[grp[j]] + beta * cov[j] 

  } 

} 

𝑦𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇𝑗  

𝑙𝑜𝑔𝑖𝑡(𝜇𝑗) = 𝛼𝑘 + 𝛽 ∗ 𝑐𝑜𝑣𝑗  

𝛼𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(𝜇𝛼 , 𝜎𝛼
2) 

 

Fitting a Normal GLMM in the BUGS language 



Lets do it in R! 

Demo 

Normal GLM -> Normal GLMM 

Script:    normGLMM.R 

 

Exercise 

Script:       binomGLMMEX.R 

Contains code to simulate data and write model 

Your task: Complete steps to run Binomial GLMM in JAGS 

 

 

(HINT: logit() and dbern()) 

 

 

𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 

𝑦𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 𝜇𝑗  

𝜇𝑗 = 𝛼 + 𝛽 ∗ 𝑐𝑜𝑣𝑗 



Questions? 



Non-standard GLMMs – an occupancy model! 

• Occupancy state (occupied: 𝑧𝑖 = 1 else 𝑧𝑖 = 0)  

 
o rarely observed perfectly 

𝑦𝑖 ≠ 𝑧𝑖 

 
o a latent variable and a discrete random effects drawn from a Bernoulli distribution 

    𝑧𝑖~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓)  

 

o data 𝑦𝑖  are imperfect observations of the true occupancy state from 𝐾 visits 

                𝑦𝑖  ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝑧𝑖  ∗  𝑝𝑖) 

 

• Aim to estimate 𝑁, the number of occupied sites:  𝑁 =  𝑧𝑖

𝑀

𝑖=1

 



Non-standard GLMMs – an occupancy model! 

• A standard occupancy model:  

 
𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) 

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 𝐾, 𝑝 ∗ 𝑧𝑖  

 

• We can also account for site level heterogeneity in detection, e.g. detection 
decreases with increasing vegetation cover (cover) 

 
𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) 

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝒑𝒊 ∗ 𝑧𝑖) 
𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽 ∗ cover𝑖   

 

 



Non-standard GLMMs – an occupancy model! 

# Generate some data: 

 set.seed(1235) 

 M <- 100 

 sim.psi <- 0.6 

 K <- 3 

 cover <- runif(M,-1,1)  

 alpha <- 0 

 beta <- -3  

 sim.p <- plogis(alpha + beta*cover) 

 plot(cover,sim.p) 

 z.vec <- rbinom(M,1,sim.psi) 

 p.eff <- sim.p * z.vec 

 y <- rbinom(M,K,p.eff) 

 N.true <- sum(z.vec) 

 N.obs <- sum(y>0) 

 

 (N.true) # 53 or 0.53 

 (N.obs)  # 42 or 0.42 

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) 
𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝒑𝒊 ∗ 𝑧𝑖) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖) = 𝛼 + 𝛽 ∗ cover𝑖   



Non-standard GLMMs – an occupancy model! 

 sink("occMod.txt") 

 cat(" 

 model{ 

 # Priors 

   psi ~ dunif(0,1) 

   alpha.p ~ dnorm(0,0.001) 

   beta.p ~ dnorm(0,0.001) 

 # Likelihood 

   for(m in 1:M){           

     z[m] ~ dbern(psi) 

     y[m] ~ dbin(mu.p[m] * z[m],K)          

     logit(mu.p[m]) <- alpha.p + beta.p * cover[m] 

   } #end j 

 N <- sum(z[]) # sum the z’s to derive N!!! 

 } #end model 

 ",fill = TRUE) 

 sink() 

𝑁 =  𝑧𝑖

𝑀

𝑖=1

 

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) 
𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝑝𝑖 ∗ 𝑧𝑖) 

𝑙𝑜𝑔𝑖𝑡(𝑝𝑖)  = 𝛼 + 𝛽 ∗ cover𝑖   



Lets do it in R! 

Exercise 

Script:       occupancyEX.R 

Contains code to simulate data and write model 

Your task: Complete steps to fit the occupancy model in JAGS 

 

 

 

𝑧𝑖 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜓) 

𝑦𝑖 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝐾, 𝑝𝑖 ∗ 𝑧𝑖) 

𝑝𝑖  = 𝛼 + 𝛽 ∗ cover𝑖  



Questions? 



Summary & Outlook 

Spatial Capture-Recapture Workshop,  

Cornell University, Ithaca, NY 

April 2014 



Summary 

• Many ways to implement MCMC 

oWin/Open BUGS, JAGS 

oR2WinBUGS, R2jags, rjags 

 

• Beyond BUGS 

oBUGS language -> flexibility, transparency 

oNatural means to deal with latent variables/random effects  

oDo Bayesian analysis without writing samplers  

oOften easier or even only way to code more complex hierarchical models 

 



Beyond ‘simple’ BUGS 

• Special features in Win/OpenBUGS 

oWinBUGS Jump interface: Reversible jump MCMC 

oAutologistic models 

 

• Alternative MCMC software 

o Stan (mc-stan.org): faster, different algorithms, but still somewhat limited 
applicability 

o SAS/STAT/R MCMC Procedure and other applications 

oDo-it-yourself in R 
 



Questions? 



Categorical variables in the BUGS language 

Model 2:            𝑦𝑗~𝑁𝑜𝑟𝑚𝑎𝑙 𝜇𝑗 , 𝜎
2  

𝜇𝑗 = 𝛼𝐶𝑂𝑉𝑗
 

for COV = {1, 2, 3, 1, 1, 2, 1…} 
 

OR 
 

𝜇𝑗 = 𝛼 + 𝛽2 ∗ 𝐶𝑂𝑉2𝑗 + 𝛽3 ∗ 𝐶𝑂𝑉3𝑗  

For COV2 = {0, 1, 0, 0, 0, 1, 0,…} 
       COV3 = {0, 0, 1, 0, 0, 0, 0,…} 

 

Means parameterization 

Contrast parameterization 



Alternative parameterizations for a categorical variable 

# MEANS 

 

# Priors 

  for(g in 1:ngr){ 

    alpha[g] ~ dnorm(0,0.001) 

  } 

 

 sigma ~ dunif(0,100)  

 tau <- 1/(sigma*sigma) 

 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha[cov[j]]  

  } 

# CONTRAST/REFERENCE 

 

# Priors 

  for(g in 2:ngr){ 

    beta[g] ~ dnorm(0,0.001) 

  } 

  beta[1] <- 0 

  alpha ~ dnorm(0,0.001) 

  sigma ~ dunif(0,100) 

  tau <- 1/(sigma*sigma) 

 

# Likelihood 

  for(j in 1:J){           

    y[j] ~ dnorm(mu[j],tau)          

   mu[j] <- alpha + beta[cov[j]] 

  } 

Categorical variables in the BUGS language 



Non-standard GLMMs – detection covariate  

Data 
data<-list(M=M, cover=cover, y=y) 

 
Initial values 
Supply initial values only for unobserved stochastic nodes 
Initial values have to fall within the range of support of the prior 
inits<-function(){list(psi=runif(1,0,1), alpha.p=runif(1),  

                       beta.p=runif(1), sigma=runif(1,0,5))} 

Parameters 
params<-c("psi","alpha", "beta", "sigma","N") 


